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Detection

Detection Problems are Ubiguitoufireats, disease, fraud, anomalies, structural failure
proliferation, intrusions, military targets, IEDs, bicankers, ...
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Detection

Detection Problems are Ubiguitoufireats, disease, fraud, anomalies, structural failure
proliferation, intrusions, military targets, IEDs, bicankers, ...

® Detection Problems = Binary Classification Problems where

» Class 1 = *“target” = events we want to detect
» Class 0 =*“background/clutter” = everything else

® Task:build a detector

X y (0or1l)
— ™| Detector — ™.
observation predicted label
X —{0,1)

Oftenx is ad-dimensional vector, i.ex = (x1, x2, ..., xq), ; € R.
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Design Goal: small error rate

Assume(x, y) is a r.v. distributed according to probability dengity

(D)= BIUC#D)= pu [ pnbixs po [ o)

\ 7 \ 7
Ve Ve

maissed detection rate false alarm rate

pier(f) + poco(f)

PoPx|0
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Px = P1Px|1 + PoPx|o = Xx-density = density for unlabeled observations
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Varieties of Detection Problems

Information Sources:

® first principles

® empirical
Information Types: Detection Problems
Px Pxl1 OF Px[o D1, Dxi P1, Dxi
(ns)  (1LClass) boL s Po. D
Px (Supervised)
(Semi-S)
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Varieties of Detection Problems

Information Sources:

® first principles

® empirical
Information TypeS: Detection Problems

Px Px/1 OT Px]o D1, Dx)i D1, Dx1

(Un-S) (1-Class) Po, Px|o Po,px|0
Da (Supervised)
(Semi-S) / \

Pxfi Do Pxl1; Px|o ~ Gaussian

(CFAR) Py
Y1 ==X
Y =021

f1, po known, (o unknown)
(matched filter)
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Lopsided Detection

® target classsignificant prior information available abopt|; (e.9. sample data)
® Dbackground clasdittle or no prior information aboug, |, because ...

# deployed environment not known ahead of time
» different background for different deployments
# background may change with time

Examples:

target detection in remote sensing (e.g. images, sensgorie, ...)

cancer detection (and most other medical detection tasks)

insider threat detection

category detection in text documents

behavior detection in computer network traffic

land cover type detection in mult-spectral images

preferred web page detection for individual users

near-failure detection for physical structures

(marketing) potential future customer detection basedusreat customer database
(insurance) detecting “at risk” customers

o000
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Common Approach: 1-Class Design Methods
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1-Class Design Methods

® Objective:1-class controleithere; oreg)
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1-Class Design Methods

® Objective:1-class controleithere; oreg)

L2

# Designf to control one of the class error rates (e.g. missed detegtion
» andminimize the volume of the sdix : f(x) = 1}.
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1-Class Design Methods

® Objective:1-class controleithere; oreg)

L2

# Designf to control one of the class error rates (e.g. missed detegtion
» andminimize the volume of the sdix : f(x) = 1}.

® Solution Methodsdensity estimation ) clustering ,
template matching, 1-class SVM, DLD-SVM, CFAR, ...
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SAR Image Segmentation
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T-72 Tank
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SAR Image Segmentation

Application Domain:Surveillance using Synthetic Aperture Radar (SAR) Imagery

Segmentation Taskdentify regions of SAR images that are likely to contain
“targets” (e.g. military vehicles, buildings, ...).

Relation to DetectionTypical approach is to designpaxel detectothat assigns a
label 1 or O to every pixel in the image based on neighborirglpalues.

Conventional ApproacHook for pixels that are brighter than the background ...
but the background intensity varies ... so use local data tmat& background
statistics and implement a CFAR detector!
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T = 3, False Alarm Rate under Gaussian = .0026, Actual Alarm Rate = 16
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1-Class Summary

common method in practice

works well when there is a large separation between targebaokground

I. .-.
Lol

m Temg @
T

it il

feature selection (model selection, tuning, etc.) unclear
most dangerous assumptidaoture targets drawn from the same distribution

biggest weaknessgnores background distribution so
& cannotcontrolthe “other” class error rate

® cannotvalidatethe overall error rate
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A New Approach to Lopsided Detection

Basic Ideaincorporate information about the background distributay using
deployment data.e. by usingunlabeleddata gathered in the deployed environment.
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Detection Problems

Px Px|1 O Px|o Pi, Px|1 P1, Px|1
(un-S) (1-Class) Po; Px[0 Po; Px|0
Dx (Supervised)
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A New Approach to Lopsided Detection

Basic Ideaincorporate information about the background distributay using
deployment data.e. by usingunlabeleddata gathered in the deployed environment.

Detection Problems

Px Pz|1 O Pajo Px|1; Px P1, Px|1 P1, Px|1
(Un-S) (1-Class) (Hemi-S) Do Px(0 Po, Px|o
Dx (Supervised)
(Semi-S)

Hemi-Supervised Learningsiven target samples, ..., x,,, ) ~ px|1, and (unlabeled)
deployment sample;, ..., X, ) ~ px, design a detectof such that(f) is small.
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Issues

since deployment data containsnatureof targets and background,
» isthere is enough information to control the error?
# how do we use this data to design a detector?

# how do we compare and validate potential solution methods?

since unlabeledesign data = deployment datee avoid the some of the concern
over whether the design distribution is the same as the gegldistribution

since the detector is designexthe deployed environmetite method must beilly
automated, robust to distribution, and have guaranteedmdational efficiency
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Error Decomposition

® Define thealarm rateof a detectorf to be

alf) == / pe(x)dx = pi(l—e1(f)) + pocolf)
fx)=1

® Thenthe errorrate is

Los Alamos National Laboratory LA-UR-08-2012 — p. 17



Error Decomposition

® Define thealarm rateof a detectorf to be
()= | b = puli =) + poco(s)
x)=1

® Thenthe errorrate is
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Consequences of Error Decomposition

If p1 IS known

® even without labeled data from class 0 we can estimate tbe te(validation)
® we can design a classifier by solving@arogate superviseclassification problem
with (weighted) training samplex;, ;, w; ) given by

{ (Xi7 17 n1(3312p1)> s X5 labeled

(5% 0, M) . X; unlabeled

(Xi, Yi, W;) 1=

and surrogate error

() i=pier(s) + poeo() = (1 oom ) er(h) + (5 ) alh)

® can use any classifier design method thétilly automated, robust to distribution,
and has guaranteed computational efficiency
® allows a principled approach to feature selection (modeksen, tuning, etc.)
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Hemi-SVM Method

Hemi-SVMalgorithm with low order polynomial run-time guarantger all inputs)
=2 _ 2
e.g. ifpin > pony andn := n + n, thenO (dﬁ2 + %Z—i + n?log )\pf%)
1

guaranteed performance under mild distributional assiamgte.g. fom > n; the
excess error satisfie$f) — e* < eny " for r € (0, 1) wheree* is the Bayes error.

Los Alamos National Laboratory LA-UR-08-2012 — p. 19



Hemi-Supervised Summary

error decomposition enables: validation, robust desigtinats, feature selection

most dangerous assumptions:
# p;isknown

» future (i.e. deployed) targets drawn from same distribution

How hard is it to estimate, ?
(differing opinions, we have a simple method ...)

Can we develop a solution method that is robust to not-kngwir?
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Experiments with simulated data
(where assumptions are satisfied)
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Hemi-Supervised Detection
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Hemi-Supervised Detection
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SAR Segmentation Revisited
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The Hemi-Supervised SAR Segmenter

Relation to Lopsided Detection Probledsbundance of target data available ahead of
time, but the background data (clutter) is not availabldél deployment and is likely to
be different

® Data RepresentatioRixel values from d0 x 10 window are used to predict the
label for the center pixel.

® Target Data274 (small) vehicle images of T-72 tanks

® Deployment DataNatural scenes with military vehicles

® For ComparisonChoose the thresholdin the CFAR detector to minimize.
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SAR Detector Results

p1 estimate.01 (prior lower and upper bounds: .003,.019)

CFAR
Hemi | =3 7% =6.46
€ 015 | .025 .017
missed detection rate .36 44 .65
alarm rate .0079| .016 .0038

SAR Image Hemi Label

CFAR: =3

CFAR T = 6.46
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SAR Detector Results

SAR Image Hemi Label
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SAR Detector Results

SAR Image CFAR7y =3
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SAR Detector Results

SAR Image = 6.46
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SAR Detector Results

Hemi Label CFAR ™ = 6.46
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Other Hemi Solution Methods

® |terative Labelinglterate the following two steps:
1. use adiscriminant function to identify a subset of theabaled samples that

are considered most likely to be background
2. apply a supervised classification method to the targetanedlicted

background” samples to obtain a new discriminant function

® \Weighted Classificatiorvarious heuristics for the sample weights

Los Alamos National Laboratory LA-UR-08-2012 — p. 30



Other Hemi Solution Methods

® |terative Labelinglterate the following two steps:
1. use adiscriminant function to identify a subset of theabaled samples that

are considered most likely to be background
2. apply a supervised classification method to the targetanedlicted

background” samples to obtain a new discriminant function

® \Weighted Classificatiorvarious heuristics for the sample weights

1

plpx|1(x) L O5j|

Observationf* (x) = | Pyx(x) — 0-5}(1) = { P (%) 0
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Other Hemi Solution Methods

lterative Labelinglterate the following two steps:

1. use adiscriminant function to identify a subset of theabaled samples that
are considered most likely to be background

2. apply a supervised classification method to the targetanedlicted
background” samples to obtain a new discriminant function

Weighted Classificationvarious heuristics for the sample weights

1

Px(x)

Observationf*(x) = [Pyx(x) — ().5}(1) = {plpx'l(x) - 0.5}

0

ML Estimates ofF; ). modifications of logistic regression (EM-type algorithms)

Density Estimationexpressf™ as one of several probability decompositions and
then use a modification of the EM algorithm for mixtures of &aans to obtain
ML estimates
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Background/History/Lit. Review

$» Naming:

Hemi-supervised Learning
Learning from [Only] Positive and Unlabeled Data (LPU)
Positive Example Learning (POSEX)
Positive Example Based Learning (PEBL)

®» Selected References:

Steinberg & Cardell (1992)vIL estimate ofP | (assumep; known)

Dennis et. al. (1998, 2002, 2005)AC framework, text experiments, importancepf

Lee, Lin, Liu etal. (2003, 2005)YIL estimate ofP; |, weighted classification, text experiments
Zhang et. al. (2005,2008)L estimate ofP; |, weighted classification, survey

Yu et. al. (2004, 2006)terative labeling

Wang, et al. (2006)iterative labeling

Elkan & Noto (2008):ML estimate ofP; |, weighted classificationpg ~ different stat model)
Ward, Hastie et. al. (2009)L estimate ofP; |, claimsp; cannot be estimated

ool

°

* not clear howp; is handled
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Comparisons

Previous Methods:

heuristics

plug-in rules

cascading estimates (high variance)

coupled sample plan

no validation method

not ready for deployment (automation & robustness)

o000l

Methods Based on Error Decomposition:

simple & direct

the only cascaded estimatepis

de-coupled sample plan

validation (in deployed environment)

feature selection, etc.

almost ready for deployment ... need reliable estimagg of

L 3 B B I I
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Detector Design Paradigms

N\ ( N\ ( N\ ( N
1-Class Hemi Semi Supervised
Px|1 Px Px|1 Px Px,y Px,y
J \, J \, J \, J
1-Class Hemi Semi Supervised
full error rate control X X X
learn from unlabeled X X
deployment data
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Detector Design Paradigms

N\ ( N\ ( N\ ( N
1-Class Hemi Semi Supervised
Px|1 Px Px|1 Px Px,y Px,y
J \, J \, J \, J
1-Class Hemi Semi Supervised
full error rate control X X X
learn from unlabeled X X

deployment data

robust to differences
betweerpreandpost 2 1 3 4

deployment distributions
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detection rate

Alarm Rate (log)
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Network Monitoring for Cybersecurity

_ new —s—
signature match

0.01 0.1 1
alarm rate

0.001

1

— New Method

Signature Match

1 1 1 1 1 1 1 1 1

01:07 02:03 02:23 03:19 04:15 05:11 06:07 07:03 07:23 08:17

Day:Hour

9

o

Problem:detectCHAT in encrypted
network traffic
Challenges:

# limited information (due to encryption)
# validating the deployed error rate
# changing statistics (traffic patterns)

Resolutions:

® network trafficmeta-data
Packet Sizes| 132, -122, 43, 28, -27, 23

Wait Times | -0.081, 0.003, -0.183, 0.00]
# target = CHAT meta-data from

unencrypted traffic

# unlabeled = ALL meta-data from
encrypted traffic

# adaptive solution: design a new (hemi)
detector every hour

NI
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Summary

lopsided detection problems are common
1-Class vs Hemi-LPU-POSEX-PEBLs Semi vs Supervised)
Hemi error decomposition

L 3 I

# validation in deployed environment
# direct solution methods

® robustness to distributional assumptions:

# use of unlabeled deployment data in design process
# design in deployed environmeat greater demand on design method

® Example Applications: SAR, Cyber

Open/Other:

estimatingp; ... orrobustHemi

NP Hemi (new paper out soon)

algorithms and analysis for the Gaussian gasene surprises here)
relation to other problems (content-based search, CFAR|,Se)

L 2 3 I
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Constant False Alarm Rate (CFAR) Detector

Assumptions:
® p, o isfixed locally
® P, Is Gaussian
® Target pixel values are generabiyighter than background pixel values
® Gaussian parameters are not known, but can be estimately loca

CFAR DetectorAt pixel location(z, ) in the image

f(zaj) _Step OA'(Z,j) — T

® Cell Averaging (CA) CFAR(i, j) anda (¢, j) are computed using stencil region:

__stencill

center
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SAR Detector Results

SVM-Hemi Label return GML-Hemi Label
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