Hemi-Supervised Detection

Don Hush

ISR-2, LANL

Detection

Detection Problems are Ubiquitous: threats, disease, fraud, anomalies, structural failure, proliferation, intrusions, military targets, IEDs, bio-markers, ...

Detection

Detection Problems are Ubiquitous: threats, disease, fraud, anomalies, structural failure, proliferation, intrusions, military targets, IEDs, bio-markers, ...

- Detection Problems = Binary Classification Problems where
 - Class 1 = "target" = events we want to detect
 - Class 0 = "background/clutter" = everything else

Detection

Detection Problems are Ubiquitous: threats, disease, fraud, anomalies, structural failure, proliferation, intrusions, military targets, IEDs, bio-markers, ...

- Detection Problems = Binary Classification Problems where
 - Class 1 = "target" = events we want to detect
 - Class 0 = "background/clutter" = everything else
- Task: build a detector

Often **x** is a *d*-dimensional vector, i.e. $\mathbf{x} = (x_1, x_2, ..., x_d), x_i \in \mathbb{R}$.

Design Goal: small error rate

Assume (\mathbf{x}, y) is a r.v. distributed according to probability density p

$$e(f) := E_p[I(f(\mathbf{x}) \neq y)] = p_1 \underbrace{\int_{f(\mathbf{x})=0} p_{\mathbf{x}|1}(\mathbf{x}) d\mathbf{x}}_{missed\ detection\ rate} + p_0 \underbrace{\int_{f(\mathbf{x})=1} p_{\mathbf{x}|0}(\mathbf{x}) d\mathbf{x}}_{false\ alarm\ rate}$$
$$= p_1 e_1(f) + p_0 e_0(f)$$

 $p_{\mathbf{x}} = p_1 p_{\mathbf{x}|1} + p_0 p_{\mathbf{x}|0} = \mathbf{x}$ -density = density for unlabeled observations

Varieties of Detection Problems

Information Sources:

- first principles
- empirical

Varieties of Detection Problems

Information Sources:

- first principles
- empirical

Lopsided Detection

- target class: significant prior information available about $p_{\mathbf{x}|1}$ (e.g. sample data)
- **background class:** little or no prior information about $p_{\mathbf{x}|0}$ because ...
 - deployed environment not known ahead of time
 - different background for different deployments
 - background may change with time

Examples:

- target detection in remote sensing (e.g. images, sensor networks, ...)
- cancer detection (and most other medical detection tasks)
- insider threat detection
- category detection in text documents
- behavior detection in computer network traffic
- land cover type detection in mult-spectral images
- preferred web page detection for individual users
- near-failure detection for physical structures
- (marketing) potential future customer detection based on current customer database
- (insurance) detecting "at risk" customers

Common Approach: 1-Class Design Methods

- ullet Design f to control one of the class error rates (e.g. missed detections)
- and minimize the volume of the set $\{x : f(x) = 1\}$.

- ullet Design f to control one of the class error rates (e.g. missed detections)
- and minimize the volume of the set $\{x : f(x) = 1\}$.
- Solution Methods: density estimation (+ threshold), clustering (+ thresholds), template matching, 1-class SVM, DLD-SVM, CFAR, ...

SAR Image Segmentation

T-72 Tank

SAR Image Segmentation

- Application Domain: Surveillance using Synthetic Aperture Radar (SAR) Imagery
- Segmentation Task: identify regions of SAR images that are likely to contain "targets" (e.g. military vehicles, buildings, ...).
- Relation to Detection: Typical approach is to design a *pixel detector* that assigns a label 1 or 0 to every pixel in the image based on neighboring pixel values.
- Conventional Approach: look for pixels that are brighter than the background ... but the background intensity varies ... so use local data to estimate background statistics and implement a CFAR detector!

 $\tau=3$, False Alarm Rate under Gaussian = .0026, Actual Alarm Rate = .016

1-Class Summary

- common method in practice
- works well when there is a large separation between target and background

- feature selection (model selection, tuning, etc.) unclear
- most dangerous assumption: future targets drawn from the same distribution
- biggest weakness: ignores background distribution so
 - cannot *control* the "other" class error rate
 - cannot validate the overall error rate

Basic Idea: incorporate information about the background distribution by using *deployment data*, i.e. by using *unlabeled* data gathered in the deployed environment.

Basic Idea: incorporate information about the background distribution by using *deployment data*, i.e. by using *unlabeled* data gathered in the deployed environment.

Basic Idea: incorporate information about the background distribution by using *deployment data*, i.e. by using *unlabeled* data gathered in the deployed environment.

Basic Idea: incorporate information about the background distribution by using *deployment data*, i.e. by using *unlabeled* data gathered in the deployed environment.

Hemi-Supervised Learning: Given target samples $(\mathbf{x}_1, ..., \mathbf{x}_{n_1}) \sim p_{\mathbf{x}|1}$, and (unlabeled) deployment samples $(\dot{\mathbf{x}}_1, ..., \dot{\mathbf{x}}_n) \sim p_{\mathbf{x}}$, design a detector \hat{f} such that $e(\hat{f})$ is small.

Issues

- since deployment data contains a *mixture* of targets and background,
 - is there is enough information to control the error?
 - how do we use this data to design a detector?
 - how do we compare and validate potential solution methods?
- since unlabeled *design data* = *deployment data* we avoid the some of the concern over whether the design distribution is the same as the deployed distribution
- since the detector is designed in the deployed environment the method must be fully automated, robust to distribution, and have guaranteed computational efficiency

Error Decomposition

lacksquare Define the *alarm rate* of a detector f to be

$$a(f) := \int_{f(\mathbf{x})=1} p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = \mathbf{p}_{1}(1 - e_{1}(f)) + \mathbf{p}_{0}e_{0}(f)$$

Then the error rate is

$$e(f) = p_1 e_1(f) + p_0 e_0(f)$$

$$= p_1 e_1(f) + p_0 e_0(f) + a(f) - a(f)$$

$$= p_1 e_1(f) + p_0 e_0(f) + a(f) - p_1 + p_1 e_1(f) - p_0 e_0(f)$$

$$= 2p_1 e_1(f) + a(f) - p_1$$

Error Decomposition

lacksquare Define the *alarm rate* of a detector f to be

$$a(f) := \int_{f(\mathbf{x})=1} p_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = p_1(1 - e_1(f)) + p_0 e_0(f)$$

Then the error rate is

$$e(f) = p_1 e_1(f) + p_0 e_0(f)$$

$$= p_1 e_1(f) + p_0 e_0(f) + a(f) - a(f)$$

$$= p_1 e_1(f) + p_0 e_0(f) + a(f) - p_1 + p_1 e_1(f) - p_0 e_0(f)$$

$$= 2p_1 e_1(f) + a(f) - p_1$$

$$\approx 2p_1 \frac{1}{n_1} \sum_{i=1}^{n_1} I(f(\mathbf{x}_i) = 0) + \frac{1}{n} \sum_{i=1}^{n} I(f(\hat{\mathbf{x}}_i) = 1) - p_1$$

Consequences of Error Decomposition

If p₁ is known

- even without labeled data from class 0 we can estimate the error rate (validation)
- we can design a classifier by solving a *surrogate supervised classification problem* with (weighted) training samples $(\bar{\mathbf{x}}_i, \bar{y}_i, \bar{w}_i)$ given by

$$(\bar{\mathbf{x}}_i, \bar{y}_i, \bar{w}_i) := \begin{cases} \left(\mathbf{x}_i, 1, \frac{2\mathbf{p}_1}{n_1(1+2\mathbf{p}_1)}\right), & \mathbf{x}_i \ labeled \\ \left(\dot{\mathbf{x}}_i, 0, \frac{1}{n(1+2\mathbf{p}_1)}\right), & \dot{\mathbf{x}}_i \ unlabeled \end{cases}$$

and surrogate error

$$\bar{e}(f) := \bar{p}_1 \bar{e}_1(f) + \bar{p}_0 \bar{e}_0(f) = \left(\frac{2p_1}{1+2p_1}\right) e_1(f) + \left(\frac{1}{1+2p_1}\right) a(f)$$

- can use any classifier design method that is fully automated, robust to distribution, and has guaranteed computational efficiency
- allows a principled approach to feature selection (model selection, tuning, etc.)

Hemi-SVM Method

- Hemi-SVM algorithm with low order polynomial run-time guarantee (for all inputs) e.g. if $\bar{p}_1 n > \bar{p}_0 n_1$ and $\bar{n} := n + n_1$ then $O\left(d\bar{n}^2 + \frac{\bar{p}_1^2}{\lambda \epsilon} \frac{\bar{n}^3}{n_1^2} + \bar{n}^2 \log \lambda \bar{p}_1^2 \frac{n_1^2}{\bar{n}}\right)$
- guaranteed performance under mild distributional assumptions: e.g. for $n > n_1$ the excess error satisfies $e(\hat{f}) e^* \le c n_1^{-r}$ for $r \in (0, 1)$ where e^* is the Bayes error.

Hemi-Supervised Summary

• error decomposition enables: validation, robust design methods, feature selection

- most dangerous assumptions:
 - p₁ is known
 - future (i.e. deployed) targets drawn from same distribution

▶ How hard is it to estimate p₁?(differing opinions, we have a simple method ...)

• Can we develop a solution method that is robust to not-knowing p_1 ?

Experiments with simulated data (where assumptions are satisfied)

Hemi-Supervised Detection

(data dimension = 10, \acute{n} = 1000)

Hemi-Supervised Detection

(data dimension = 10, \acute{n} = 1000)

SAR Segmentation Revisited

The Hemi-Supervised SAR Segmenter

Relation to Lopsided Detection Problem: Abundance of target data available ahead of time, but the background data (clutter) is not available until deployment and is likely to be different

- Data Representation: Pixel values from a 10×10 window are used to predict the label for the center pixel. (T-72 tanks are roughly 45 pixels long and 25 pixels wide)
- Target Data: 274 (small) vehicle images of T-72 tanks (aspect angles uniformly distributed over the range 0 to 360 degrees)
- Deployment Data: Natural scenes with military vehicles
- For Comparison: Choose the threshold τ in the CFAR detector to minimize \bar{e} .

SAR Detector Results

p₁ estimate: .01 (prior lower and upper bounds: .003,.019)

		CFAR	
	Hemi	$\tau = 3$	$\tau^* = 6.46$
$ar{e}$.015	.025	.017
missed detection rate	.36	.44	.65
alarm rate	.0079	.016	.0038

SAR Image

Hemi Label

CFAR: $\tau = 3$

 $\text{CFAR } \tau^* = 6.46$

SAR Image

Hemi Label

SAR Image

CFAR, $\tau = 3$

SAR Image

CFAR, $\tau^* = 6.46$

Hemi Label

CFAR, $\tau^* = 6.46$

Other Hemi Solution Methods

- Iterative Labeling: Iterate the following two steps:
 - 1. use a discriminant function to identify a subset of the unlabeled samples that are considered most likely to be background
 - 2. apply a supervised classification method to the target and "predicted background" samples to obtain a new discriminant function
- Weighted Classification: various heuristics for the sample weights

Other Hemi Solution Methods

- Iterative Labeling: Iterate the following two steps:
 - 1. use a discriminant function to identify a subset of the unlabeled samples that are considered most likely to be background
 - 2. apply a supervised classification method to the target and "predicted background" samples to obtain a new discriminant function
- Weighted Classification: various heuristics for the sample weights

Observation:
$$f^*(\mathbf{x}) = \left[P_{1|\mathbf{x}}(\mathbf{x}) - 0.5\right]_0^1 = \left[\frac{p_1 p_{\mathbf{x}|1}(\mathbf{x})}{p_{\mathbf{x}}(\mathbf{x})} - 0.5\right]_0^1$$

Other Hemi Solution Methods

- Iterative Labeling: Iterate the following two steps:
 - 1. use a discriminant function to identify a subset of the unlabeled samples that are considered most likely to be background
 - 2. apply a supervised classification method to the target and "predicted background" samples to obtain a new discriminant function
- Weighted Classification: various heuristics for the sample weights

Observation:
$$f^*(\mathbf{x}) = \left[P_{1|\mathbf{x}}(\mathbf{x}) - 0.5\right]_0^1 = \left[\frac{p_1 p_{\mathbf{x}|1}(\mathbf{x})}{p_{\mathbf{x}}(\mathbf{x})} - 0.5\right]_0^1$$

- \blacksquare ML Estimates of $P_{1|x}$: modifications of logistic regression (EM-type algorithms)
- Density Estimation: express f^* as one of several probability decompositions and then use a modification of the EM algorithm for mixtures of Gaussians to obtain ML estimates

Background/History/Lit. Review

Naming:

Hemi-supervised Learning

Learning from [Only] Positive and Unlabeled Data (LPU)

Positive Example Learning (POSEX)

Positive Example Based Learning (PEBL)

Selected References:

- Steinberg & Cardell (1992): ML estimate of $P_{1|x}$ (assume p_1 known)
- Dennis et. al. (1998, 2002, 2005): PAC framework, text experiments, importance of p₁
- Lee, Lin, Liu et al. (2003, 2005): ML estimate of $P_{1|x}$, weighted classification, text experiments*
- ▶ Zhang et. al. (2005,2008): ML estimate of $P_{1|x}$, weighted classification, survey*
- **▶** Yu et. al. (2004, 2006): iterative labeling*
- Wang, et al. (2006): iterative labeling*
- Elkan & Noto (2008): ML estimate of $P_{1|x}$, weighted classification, ($p_1 \sim$ different stat model)
- ▶ Ward, Hastie et. al. (2009): ML estimate of $P_{1|x}$, claims p_1 cannot be estimated

^{*} not clear how p₁ is handled

Comparisons

Previous Methods:

- heuristics
- plug-in rules
- cascading estimates (high variance)
- coupled sample plan
- no validation method
- not ready for deployment (automation & robustness)

Methods Based on Error Decomposition:

- simple & direct
- \blacksquare the only cascaded estimate is p_1
- de-coupled sample plan
- validation (in deployed environment)
- feature selection, etc.
- \blacksquare almost ready for deployment ... need reliable estimate of p_1

Detector Design Paradigms

1-Class

 $p_{\mathbf{x}|1}$

Hemi

 $p_{\mathbf{x}} - p_{\mathbf{x}|1}$

Semi

 $p_{\mathbf{x}}$ $p_{\mathbf{x},y}$

Supervised

 $p_{\mathbf{x},y}$

	1-Class	Hemi	Semi	Supervised
full error rate control		X	X	X
learn from unlabeled		X	X	
deployment data				

Detector Design Paradigms

1-Class

 $p_{\mathbf{x}|1}$

Hemi

 $p_{\mathbf{x}} = p_{\mathbf{x}|1}$

Semi

 $p_{\mathbf{x}}$ $p_{\mathbf{x},y}$

Supervised

 $p_{\mathbf{x},y}$

	1-Class	Hemi	Semi	Supervised
full error rate control		X	X	X
learn from unlabeled		X	X	
deployment data				
robust to differences				
between pre and post	2	1	3	4
deployment distributions				

Network Monitoring for Cybersecurity

- Problem: detect CHAT in encrypted network traffic
- Challenges:
 - limited information (due to encryption)
 - validating the deployed error rate
 - changing statistics (traffic patterns)
- Resolutions:
 - network traffic *meta-data*:

Packet Sizes	132, -122, 43, 28, -27, 23
Wait Times	-0.081, 0.003, -0.183, 0.002

- target = CHAT meta-data from unencrypted traffic
- unlabeled = ALL meta-data from encrypted traffic
- adaptive solution: design a new (hemi) detector every hour

Summary

- lopsided detection problems are common
- 1-Class vs Hemi-LPU-POSEX-PEBL (vs Semi vs Supervised)
- Hemi error decomposition
 - validation in deployed environment
 - direct solution methods
- robustness to distributional assumptions:
 - use of unlabeled deployment data in design process
 - \bullet design in deployed environment \Rightarrow greater demand on design method
- Example Applications: SAR, Cyber

Open/Other:

- estimating p₁ ... or robust Hemi
- NP Hemi (new paper out soon)
- algorithms and analysis for the Gaussian case (some surprises here)
- relation to other problems (content-based search, CFAR, Semi, ...)

Constant False Alarm Rate (CFAR) Detector

Assumptions:

- $\oint_{\mathbf{x}|0}$ is fixed locally (but may vary in different regions of the image)
- $\oint_{\mathbf{x}|0}$ is *Gaussian* (with different parameters in different regions)
- Target pixel values are generally *brighter* than background pixel values
- Gaussian parameters are not known, but can be estimated locally

CFAR Detector: At pixel location (i, j) in the image

$$f(i,j) = Step\left[\frac{x(i,j) - \hat{\mu}(i,j)}{\hat{\sigma}(i,j)} - \tau\right]$$

• Cell Averaging (CA) CFAR: $\hat{\mu}(i,j)$ and $\hat{\sigma}(i,j)$ are computed using stencil region:

SVM-Hemi Label

GML-Hemi Label