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Detection

Detection Problems are Ubiquitous:threats, disease, fraud, anomalies, structural failure,

proliferation, intrusions, military targets, IEDs, bio-markers, ...
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Class 0 = “background/clutter” = everything else
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Detection

Detection Problems are Ubiquitous:threats, disease, fraud, anomalies, structural failure,

proliferation, intrusions, military targets, IEDs, bio-markers, ...

Detection Problems = Binary Classification Problems where

Class 1 = “target” = events we want to detect

Class 0 = “background/clutter” = everything else

Task:build a detector

observation

x

Detector
predicted label

ŷ (0 or 1)

f : X → {0, 1}

Oftenx is ad-dimensional vector, i.e.x = (x1, x2, ..., xd), xi ∈ R.
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Design Goal: small error rate

Assume(x, y) is a r.v. distributed according to probability densityp

e(f) := Ep[I(f(x) 6= y)] = p1

∫

f(x)=0

p
x|1(x)dx

︸ ︷︷ ︸

missed detection rate

+ p0

∫

f(x)=1

p
x|0(x)dx

︸ ︷︷ ︸

false alarm rate

= p1e1(f) + p0e0(f)

p0px|0

p1px|1

f(x) = 0 f(x) = 1

x
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px = p1px|1 + p0px|0 = x-density = density for unlabeled observations

UNCLASSIFIED Los Alamos National Laboratory LA-UR-08-2012 – p. 4



Varieties of Detection Problems

Information Sources:

first principles

empirical

Information Types: Detection Problems

px p1, px|1p1, px|1

p0, px|0
px

p0, px|0

px|1 or px|0

(1-Class)

(Semi-S)

(Supervised)
(un-S)
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Varieties of Detection Problems

Information Sources:

first principles

empirical

Information Types: Detection Problems

px p1, px|1p1, px|1

p0, px|0
px

p0, px|0

px|1 or px|0

(1-Class)

(Semi-S)

(Supervised)
(Un-S)

Σ1 = Σ0 = Σ

Σ = σ2I

...

...

...

...

px|1 px|0

(CFAR)

µ1, µ0 known, (σ unknown)
(matched filter)

px|1, px|0 ∼ Gaussian
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Lopsided Detection

target class:significant prior information available aboutp
x|1 (e.g. sample data)

background class:little or no prior information aboutp
x|0 because ...

deployed environment not known ahead of time

different background for different deployments

background may change with time

Examples:

target detection in remote sensing (e.g. images, sensor networks, ...)

cancer detection (and most other medical detection tasks)

insider threat detection

category detection in text documents

behavior detection in computer network traffic

land cover type detection in mult-spectral images

preferred web page detection for individual users

near-failure detection for physical structures

(marketing) potential future customer detection based on current customer database

(insurance) detecting “at risk” customers
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Common Approach: 1-Class Design Methods
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1-Class Design Methods

Objective:1-class control(eithere1 or e0)
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1-Class Design Methods

Objective:1-class control(eithere1 or e0)

x1

x2
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1-Class Design Methods

Objective:1-class control(eithere1 or e0)

x1

x2

Designf to control one of the class error rates (e.g. missed detections)

andminimize the volume of the set{x : f(x) = 1}.
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1-Class Design Methods

Objective:1-class control(eithere1 or e0)

x1

x2

Designf to control one of the class error rates (e.g. missed detections)

andminimize the volume of the set{x : f(x) = 1}.

Solution Methods:density estimation(+ threshold), clustering(+ thresholds),

template matching, 1-class SVM, DLD-SVM, CFAR, ...
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SAR Image Segmentation
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T-72 Tank
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SAR Image Segmentation

Application Domain:Surveillance using Synthetic Aperture Radar (SAR) Imagery

Segmentation Task:identify regions of SAR images that are likely to contain

“targets” (e.g. military vehicles, buildings, ...).

Relation to Detection:Typical approach is to design apixel detectorthat assigns a

label 1 or 0 to every pixel in the image based on neighboring pixel values.

Conventional Approach:look for pixels that are brighter than the background ...

but the background intensity varies ... so use local data to estimate background

statistics and implement a CFAR detector!
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τ = 3, False Alarm Rate under Gaussian = .0026, Actual Alarm Rate = .016
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1-Class Summary

common method in practice

works well when there is a large separation between target and background

feature selection (model selection, tuning, etc.) unclear

most dangerous assumption:future targets drawn from the same distribution

biggest weakness:ignores background distribution so

cannotcontrol the “other” class error rate

cannotvalidatethe overall error rate
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A New Approach to Lopsided Detection

Basic Idea:incorporate information about the background distribution by using

deployment data, i.e. by usingunlabeleddata gathered in the deployed environment.
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Detection Problems

px p1, px|1p1, px|1

p0, px|0
px

p0, px|0
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A New Approach to Lopsided Detection

Basic Idea:incorporate information about the background distribution by using

deployment data, i.e. by usingunlabeleddata gathered in the deployed environment.

Detection Problems

px p1, px|1p1, px|1

p0, px|0
px

p0, px|0

px|1, pxpx|1 or px|0

(1-Class)

(Semi-S)

(Supervised)
(Un-S) (Hemi-S)

Hemi-Supervised Learning:Given target samples(x1, ...,xn1
) ∼ p

x|1, and (unlabeled)

deployment samples(x́1, ..., x́n) ∼ px, design a detector̂f such thate(f̂) is small.
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Issues

since deployment data contains amixtureof targets and background,

is there is enough information to control the error?

how do we use this data to design a detector?

how do we compare and validate potential solution methods?

since unlabeleddesign data = deployment datawe avoid the some of the concern

over whether the design distribution is the same as the deployed distribution

since the detector is designedin the deployed environmentthe method must befully

automated, robust to distribution, and have guaranteed computational efficiency
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Error Decomposition

Define thealarm rateof a detectorf to be

a(f) :=

∫

f(x)=1

px(x)dx = p1(1 − e1(f)) + p0e0(f)

Then the error rate is

e(f) = p1e1(f) + p0e0(f)

= p1e1(f) + p0e0(f) + a(f) − a(f)

= p1e1(f) + p0e0(f) + a(f) − p1 + p1e1(f) − p0e0(f)

= 2p1e1(f) + a(f) − p1
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Error Decomposition

Define thealarm rateof a detectorf to be

a(f) :=

∫

f(x)=1

px(x)dx = p1(1 − e1(f)) + p0e0(f)

Then the error rate is

e(f) = p1e1(f) + p0e0(f)

= p1e1(f) + p0e0(f) + a(f) − a(f)

= p1e1(f) + p0e0(f) + a(f) − p1 + p1e1(f) − p0e0(f)

= 2p1e1(f) + a(f) − p1

≈ 2p1
1

n1

n1∑

i=1

I(f(xi) = 0) +
1

n

n∑

i=1

I(f(x́i) = 1) − p1
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Consequences of Error Decomposition

If p1 is known

even without labeled data from class 0 we can estimate the error rate(validation)

we can design a classifier by solving asurrogate supervisedclassification problem

with (weighted) training samples(x̄i, ȳi, w̄i) given by

(x̄i, ȳi, w̄i) :=







(

xi, 1,
2p1

n1(1+2p1)

)

, xi labeled
(

x́i, 0, 1
n(1+2p1)

)

, x́i unlabeled

and surrogate error

ē(f) := p̄1ē1(f) + p̄0ē0(f) =

(
2p1

1 + 2p1

)

e1(f) +

(
1

1 + 2p1

)

a(f)

can use any classifier design method that isfully automated, robust to distribution,

and has guaranteed computational efficiency

allows a principled approach to feature selection (model selection, tuning, etc.)
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Hemi-SVM Method

Hemi-SVMalgorithm with low order polynomial run-time guarantee(for all inputs)

e.g. if p̄1n > p̄0n1 andn̄ := n + n1 thenO
(

dn̄2 +
p̄
2

1

λǫ
n̄3

n2

1

+ n̄2 log λp̄2
1

n2

1

n̄

)

guaranteed performance under mild distributional assumptions: e.g. forn > n1 the

excess error satisfiese(f̂) − e∗ ≤ cn−r
1 for r ∈ (0, 1) wheree∗ is the Bayes error.
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Hemi-Supervised Summary

error decomposition enables: validation, robust design methods, feature selection

most dangerous assumptions:

p1 is known

future (i.e. deployed) targets drawn from same distribution

How hard is it to estimatep1?

(differing opinions, we have a simple method ...)

Can we develop a solution method that is robust to not-knowing p1?
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Experiments with simulated data
(where assumptions are satisfied)
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Hemi-Supervised Detection

(data dimension = 10,́n = 1000)
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SAR Segmentation Revisited
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The Hemi-Supervised SAR Segmenter

Relation to Lopsided Detection Problem:Abundance of target data available ahead of

time, but the background data (clutter) is not available until deployment and is likely to

be different

Data Representation:Pixel values from a10 × 10 window are used to predict the

label for the center pixel.(T-72 tanks are roughly 45 pixels long and 25 pixels wide)

Target Data:274 (small) vehicle images of T-72 tanks(aspect angles uniformly

distributed over the range 0 to 360 degrees)

Deployment Data:Natural scenes with military vehicles

For Comparison:Choose the thresholdτ in the CFAR detector to minimizēe.

UNCLASSIFIED Los Alamos National Laboratory LA-UR-08-2012 – p. 24



SAR Detector Results

p1 estimate:.01 (prior lower and upper bounds: .003,.019)

CFAR

Hemi τ = 3 τ∗ = 6.46

ē .015 .025 .017

missed detection rate .36 .44 .65

alarm rate .0079 .016 .0038

SAR Image Hemi Label CFAR:τ = 3 CFAR τ∗ = 6.46
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SAR Detector Results

SAR Image Hemi Label
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SAR Detector Results

SAR Image CFAR,τ = 3
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SAR Detector Results

SAR Image CFAR,τ∗ = 6.46
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SAR Detector Results

Hemi Label CFAR,τ∗ = 6.46

UNCLASSIFIED Los Alamos National Laboratory LA-UR-08-2012 – p. 29



Other Hemi Solution Methods

Iterative Labeling:Iterate the following two steps:

1. use a discriminant function to identify a subset of the unlabeled samples that

are considered most likely to be background

2. apply a supervised classification method to the target and“predicted

background” samples to obtain a new discriminant function

Weighted Classification:various heuristics for the sample weights
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Other Hemi Solution Methods

Iterative Labeling:Iterate the following two steps:

1. use a discriminant function to identify a subset of the unlabeled samples that

are considered most likely to be background

2. apply a supervised classification method to the target and“predicted

background” samples to obtain a new discriminant function

Weighted Classification:various heuristics for the sample weights

Observation:f∗(x) =
[
P1|x(x) − 0.5

]1

0
=

[
p1p

x|1(x)

px(x) − 0.5
]1

0
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Other Hemi Solution Methods

Iterative Labeling:Iterate the following two steps:

1. use a discriminant function to identify a subset of the unlabeled samples that

are considered most likely to be background

2. apply a supervised classification method to the target and“predicted

background” samples to obtain a new discriminant function

Weighted Classification:various heuristics for the sample weights

Observation:f∗(x) =
[
P1|x(x) − 0.5

]1

0
=

[
p1p

x|1(x)

px(x) − 0.5
]1

0

ML Estimates ofP1|x: modifications of logistic regression (EM-type algorithms)

Density Estimation:expressf∗ as one of several probability decompositions and

then use a modification of the EM algorithm for mixtures of Gaussians to obtain

ML estimates
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Background/History/Lit. Review

Naming:

Hemi-supervised Learning

Learning from [Only] Positive and Unlabeled Data (LPU)

Positive Example Learning (POSEX)

Positive Example Based Learning (PEBL)

Selected References:
Steinberg & Cardell (1992):ML estimate ofP1|x (assumep1 known)

Dennis et. al. (1998, 2002, 2005):PAC framework, text experiments, importance ofp1

Lee, Lin, Liu et al. (2003, 2005):ML estimate ofP1|x, weighted classification, text experiments∗

Zhang et. al. (2005,2008):ML estimate ofP1|x, weighted classification, survey∗

Yu et. al. (2004, 2006):iterative labeling∗

Wang, et al. (2006):iterative labeling∗

Elkan & Noto (2008):ML estimate ofP1|x, weighted classification, (p1 ∼ different stat model)

Ward, Hastie et. al. (2009):ML estimate ofP1|x, claimsp1 cannot be estimated

* not clear howp1 is handled
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Comparisons

Previous Methods:

heuristics

plug-in rules

cascading estimates (high variance)

coupled sample plan

no validation method

not ready for deployment (automation & robustness)

Methods Based on Error Decomposition:

simple & direct

the only cascaded estimate isp1

de-coupled sample plan

validation (in deployed environment)

feature selection, etc.

almost ready for deployment ... need reliable estimate ofp1
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Detector Design Paradigms

1-Class Hemi Semi Supervised

p
x|1p

x|1 pxpx px,ypx,y

1-Class Hemi Semi Supervised

full error rate control x x x

learn from unlabeled x x

deployment data
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Detector Design Paradigms

1-Class Hemi Semi Supervised

p
x|1p

x|1 pxpx px,ypx,y

1-Class Hemi Semi Supervised

full error rate control x x x

learn from unlabeled x x

deployment data

robust to differences

betweenpreandpost 2 1 3 4

deployment distributions
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Network Monitoring for Cybersecurity

 1
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Signature Match
New Method

Problem:detectCHAT in encrypted

network traffic

Challenges:

limited information (due to encryption)

validating the deployed error rate

changing statistics (traffic patterns)

Resolutions:

network trafficmeta-data:
Packet Sizes 132, -122, 43, 28, -27, 23

Wait Times -0.081, 0.003, -0.183, 0.002

target = CHAT meta-data from

unencrypted traffic

unlabeled = ALL meta-data from

encrypted traffic

adaptive solution: design a new (hemi)

detector every hour
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Summary

lopsided detection problems are common

1-Class vs Hemi-LPU-POSEX-PEBL(vs Semi vs Supervised)

Hemi error decomposition

validation in deployed environment

direct solution methods

robustness to distributional assumptions:

use of unlabeled deployment data in design process

design in deployed environment⇒ greater demand on design method

Example Applications: SAR, Cyber

Open/Other:

estimatingp1 ... or robustHemi

NP Hemi (new paper out soon)

algorithms and analysis for the Gaussian case(some surprises here)

relation to other problems (content-based search, CFAR, Semi, ...)
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Constant False Alarm Rate (CFAR) Detector

Assumptions:

ṕ
x|0 is fixed locally(but may vary in different regions of the image)

ṕ
x|0 is Gaussian(with different parameters in different regions)

Target pixel values are generallybrighter than background pixel values

Gaussian parameters are not known, but can be estimated locally

CFAR Detector:At pixel location(i, j) in the image

f(i, j) = Step

[
x(i, j) − µ̂(i, j)

σ̂(i, j)
− τ

]

Cell Averaging (CA) CFAR:̂µ(i, j) andσ̂(i, j) are computed using stencil region:

stencil

center
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SAR Detector Results

SVM-Hemi Label GML-Hemi Labelreturn
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