Ratchet: The Underdog of Machine Learning Algorithms

Don Hush (work with Mike Cannon, Mike Fugate, and Clint Scovel at LANL)

2017 (origin 2002)
underdog:

- a competitor thought to have little chance of winning a fight or contest.
- *synonyms*: long shot, dark horse, weaker one, little guy, ...
- downtrodden, victim, loser, fall guy
 a person who has little status in society.
Summary:

- We present a very simple algorithm called Ratchet for optimizing empirical learning criteria R that satisfy the PLD property.
- The Ratchet algorithm can be used in a large number of learning problems. We demonstrate two in detail and provide an extensive list of others.

Outline:

- Define the PLD property
- “Derive” the Ratchet algorithm
- How to Apply the Ratchet Algorithm (map original problem to PLD problem)
 - linear classifier for weighted 2-class classification
 - linear machine for weighted Multiclass Regression
- Examples

Note: The learning strategy we employ is empirical error minimization, which is (almost) always an NP-Hard problem. Ratchet is a randomized algorithm that finds an optimal solution asymptotically (with probability 1).
1. Let $Z = \{z_1, \ldots, z_n\}, z_i \in \mathbb{R}^m$ be a “data set” (strictly speaking it is a multiset).
2. Z^+ is PL subset of Z if there exists an $\omega \in \mathbb{R}^m$ such that $\omega \cdot z_i > 0, \forall z_i \in Z^+$
3. The witness set Ω^+ for a PL subset Z^+ is defined

$$\Omega^+ = \{\omega : \omega \cdot z_i > 0, \forall z_i \in Z^+\}$$

($\{z : \omega \cdot z = 0\}$ is a line through the origin)
The PLD Property

• Let R be a real-valued function of the data set Z and the parameter vector ω. For example

$$ R(\omega) = |\{z_i : \omega \cdot z_i > 0\}| = \text{number of } \omega\text{-positive samples} $$

• Define the solution set

$$ \Omega^* = \arg\max_{\omega \in \mathbb{R}^m} R(\omega) $$

(we could choose the min instead of the max)

• The risk R is PLD if there exists a PL subsample $Z^+ \subseteq Z$ whose witness set Ω^+ satisfies $\Omega^+ \subseteq \Omega^*$.

• It is easy to prove that the example R above is PLD:
 1. For any $\omega^* \in \Omega^*$ let $Z^*_+ = \{z_i : \omega^* \cdot z_i > 0\}$
 2. It is easy to prove that $\Omega^*_+ \subseteq \Omega^*$

Consequence of PLD Property: To maximize R it is sufficient to witness a particular PL subset of Z.
maximize the number of positively labeled points
Example #1

In this case $\Omega^+_\star = \Omega^*$
Example #2

maximize the number of positively labeled points
Example #2

Witness set Ω_1^+.
Example #2

Witness set Ω_2^+.
Example #2

Solution set $\Omega^* = \Omega_1^+ \cup \Omega_2^+$.
Example #3

maximize the sum of point scores
Example #3

Z^+ does not always contain the largest number of points.
Example #4

maximize the sum of scores for complete groups (scores are 0 for other groups)
Example #4

Z^+ is not unique, individual points do not always contribute to R.
maximize the sum of scores for complete or partial groups (scores are 0 for other groups)
Z^+ is not unique, individual points do not always contribute to R.
Example: every sample z has a score vector (a_1, a_{-1}) where

- $a_1 =$ score assigned if z is on the positive side
- $a_{-1} =$ score assigned if z is on the non-positive (negative) side

Goal: maximize the sum of sample scores
Example: every sample z has a score vector (a_1, a_{-1}) where
- $a_1 = \text{score assigned if } z \text{ is on the positive side}$
- $a_{-1} = \text{score assigned if } z \text{ is on the non-positive (negative) side}$

Equivalent: replace (a_1, a_{-1}) by $\Delta = a_1 - a_{-1}$ and maximize sum of Δ-scores as before
The Perceptron (PCP) Algorithm

INPUT: A “data set” \(Z = \{ z_1, z_2, \ldots, z_n \} \).

\[\omega \leftarrow 0 \]

loop
 \(i \leftarrow \) next index from \(\{1, 2, \ldots, n\} \)
 if \((\omega \cdot z_i \leq 0) \) then
 \(\omega \leftarrow \omega + z_i \)
 end if
end loop

Properties:

• If the entire set \(Z \) is PL then PCP will produce a member of the witness set \(\Omega^+ \) in a finite number of steps.

• If \(Z \) is not PL then PCP cycles endlessly ... (but \(\omega \) remains bounded)
The Randomized Perceptron (RP) Algorithm

INPUT: A “data set” $Z = \{z_1, z_2, ..., z_n\}$.

$\omega \leftarrow 0$

loop

 $i \leftarrow$ index chosen randomly from $\{1, 2, ..., n\}$ (uniform distribution)

 if $(\omega \cdot z_i \leq 0)$ then

 $\omega \leftarrow \omega + z_i$

 end if

end loop

Properties:

- If the entire set Z is PL then RP will produce a member of the witness set Ω^+ asymptotically (with probability 1).
- RP will produce a member of the witness set for every PL subset of Z asymptotically (with probability 1).
The Ratchet Algorithm

INPUT: A “data set” $Z = \{z_1, z_2, ..., z_n\}$.

$\omega^* \leftarrow 0$, $R^* \leftarrow R(\omega^*)$
$\omega \leftarrow 0$

\{Perform the RP algorithm and track the best solution.\}

loop
 $i \leftarrow$ index chosen randomly from $\{1, 2, ..., n\}$
 if $(\omega \cdot z_i \leq 0)$ then
 $\omega \leftarrow \omega + z_i$
 if $(R(\omega) > R^*)$ then
 $R^* \leftarrow R(\omega)$
 $\omega^* \leftarrow \omega$
 end if
 end if
end loop

Theorem (Hush, 2002): If R is PLD then $R(\omega^*) \xrightarrow{\text{wp1}} \max_\omega R(\omega)$.
The Pocket Algorithm

INPUT: A “data set” $Z = \{z_1, z_2, \ldots, z_n\}$.

$\text{RunLength} \leftarrow 0$, $\text{MaxRunLength} \leftarrow 0$, $\omega \leftarrow 0$

{Perform the RP algorithm and keep ω that produces largest sequence of successes.}

\begin{algorithm}
\begin{algorithmic}
\State $i \leftarrow$ index chosen randomly from \{1, 2, \ldots, n\}
\If {$(\omega \cdot z_i > 0)$}
\State $\text{RunLength} \leftarrow \text{RunLength} + 1$
\Else\If {($\text{RunLength} > \text{MaxRunLength}$)}
\State $\text{MaxRunLength} \leftarrow \text{RunLength}$
\State $\omega^* \leftarrow \omega$
\EndIf
\State $\omega \leftarrow \omega + z_i$
\State $\text{RunLength} \leftarrow 0$
\EndIf
\EndIf
\end{algorithmic}
\end{algorithm}

Theorem (Gallant 1990, Muselli 1995): If $R = \#$ of positive samples then
\[R(\omega^*) \overset{w.p.1}{\rightarrow} \max_{\omega} R(\omega). \]
Pocket vs Ratchet

- **Pocket:**
 - faster iterations than Ratchet
 - only valid for very specific criterion R

- **Ratchet:**
 - slower iterations than Pocket because it must evaluate R each time ω is updated *
 - valid for any criterion R that is PLD ... much more general!

* tricks for accelerating this evaluation
How Do We Use Ratchet?

What Do We Have to Do:

1. find a data map \(D \mapsto Z \) and
2. a criterion PLD \(R \) on \(Z \) that is calibrated to \(e \)
Example: Linear Classifier

Problem Instance: labeled data for a 2-class problem (with sample weights a_i)

\[D = \{(x_1, y_1, a_1), \ldots, (x_n, y_n, a_n)\} \]
\[x_i \in \mathbb{R}^d, \quad y_i \in \{-1, +1\}, \quad a_i \in \mathbb{R}^+ \]

Linear Classifier (parameterized by $\omega \in \mathbb{R}^{d+1}$):

\[f_\omega(x) = \begin{cases}
1, & \omega \cdot (1, x) > 0 \\
-1, & \omega \cdot (1, x) \leq 0
\end{cases} \]

Weighted Empirical Error: (the weights satisfy $a_i > 0$)

\[e(\omega) = \sum_{i:y_i=-1} a_i I(\omega \cdot (1, x_i) > 0) + \sum_{i:y_i=+1} a_i I(\omega \cdot (1, x_i) \leq 0) \]

Goal: find ω^* that minimizes e
dotted line shows possible solution when all the weights a_i are equal
To simplify without obscuring the main point we consider only ω that satisfy

$$\omega \cdot (1, x_i) \neq 0, \ \forall x_i$$

(all results hold without this restriction). With this the error can be re-written

$$e(\omega) = \sum_{i:y_i=-1} a_i l(\omega \cdot (1, x_i) > 0) + \sum_{i:y_i=+1} a_i l(\omega \cdot (1, x_i) < 0)$$

$$= \sum_{i:y_i=-1} a_i l(\omega \cdot y_i(1, x_i) < 0) + \sum_{i:y_i=+1} a_i l(\omega \cdot y_i(1, x_i) < 0)$$

$$= \sum_{i=1}^n a_i l(\omega \cdot y_i(1, x_i) < 0)$$

$$= \sum_{i=1}^n a_i l(\omega \cdot z_i < 0)$$

where

$$z_i = y_i(1, x_i)$$

defines a data map.
Convert the inequality from $<$ to $>$:

\[e(\omega) = \sum_{i=1}^{n} a_i I(\omega \cdot z_i < 0) \]

\[= \sum_{i=1}^{n} a_i (1 - I(\omega \cdot z_i > 0)) \]

In this case it is trivial to prove that e is PLD.

Note: Ratchet can minimize weighted classification error, but Pocket cannot.
Other Learning Problems

Learning problems that can be mapped to a surrogate weighted 2-class problem.

- Supervised Classification
- Anomaly Detection
- 1-Class Classification
- Hemi-Supervised Detection
- Semi-Supervised Detection/Classification
- Min-Max Classification
- Multiple Instance
- Learning with Reject
- Rare Category Detection
- Learning to Order

Additional Learning problems that can be mapped to a PLD problem

- Neyman-Pearson Classification
- Multi-class classification (with arbitrary loss)
- Multi-class extensions
 - individual sample weights
 - multi-class regression
Multi-category Prediction Problems

- **Input/Output**: Define
 - \(X = \text{input vector space} \ (e.g. \ X \subseteq \mathbb{R}^d) \)
 - \(M = \text{number of categories} \)
 - \(Y = \{Y_1, Y_2, ..., Y_M\} = \text{categorical output values} \) (not necessarily \(\{1,2,3,...\} \))
 - \((x, y) \in X \times Y = \text{data sample} \)

- **Prediction Functions**: Define
 - \(C = \{1, ..., M\} \) the label set
 - \(f : X \rightarrow C = \text{multiclass classifier} \)
 - \(\hat{y} = Y_{f(x)} = \text{the predicted output} \)
Multi-category Prediction Problems

- **Loss Functions:**
 - General Loss: \(b(x, y, \hat{y}) = \) loss incurred at \(x \) when \(y \) is true and \(\hat{y} \) is predicted
 - 0-1 Loss: (e.g. standard multiclass classification)
 \[
 b(x, y, \hat{y}) = \begin{cases}
 0 & y = \hat{y} \\
 1 & y \neq \hat{y}
 \end{cases}
 \]
 - Class Dependent Loss: \(b(x, y, \hat{y}) = b(y, \hat{y}) = \) loss when \(y \) is true and \(\hat{y} \) is predicted
 - **Boosting** is an example where the loss depends on \(x \). (i.e. general loss)

- **Performance Criterion:** Let \(P \) be a probability distribution on \(X \times Y \). The average error is for the predictor \(f \) is
 \[
e(f) = E_P[b(x, y, \hat{y})] = E_P[b(x, y, \mathcal{Y}_f(x))]\]

- **Learning Problem:** Given a collection \(D_n = ((x_1, y_1), ..., (x_n, y_n)) \) of i.i.d. samples from an unknown distribution \(P \), determine a model \(\hat{f} \) whose error \(e(\hat{f}) \) is as small as possible.
1. MC: traditional M–class classification problem (0-1 loss)
2. MCL: traditional M–class classification problem with class dependent loss
3. MCGL: M–category prediction problem with generalized loss (generalizes the MCL criterion)

We show examples of 2,3.
1. All Pairs: (AVA) **Function Class:** A total of $M(M - 1)/2$ pairwise discriminant functions each cast a vote for one of two classes. The class with the most votes wins (needs a tie breaking scheme).

Learning Procedure: Design each pairwise discriminant function to discriminate between two classes (each case ignores all the other classes). (How do we modify this method for generalized loss?)
2. One vs All: (OVA) **Function Class:** A total of M discriminants are computed, one for each class, and the class with the largest discriminant value wins.

Learning Procedure: Each of the M functions is designed to discriminate between one class and all the others.

(How do we modify this method for generalized loss?)
3. **Direct:** **Function Class:** A multiclass function $f : X \rightarrow C$ similar to the OVA function is typically used.

Learning Procedure: The function f is designed to discriminate between all classes simultaneously.

Examples
- decision trees
- multilayer perceptrons with backpropagation
- M-class GML
- k-nearest neighbors

Ratchet provides a *direct* method for *linear machines.*
Linear Machine: Each one-vs-all function is a *linear* discriminant.

\[w_1 \cdot (1, x) \]

\[w_2 \cdot (1, x) \]

\[w_3 \cdot (1, x) \]

Assign to class with the largest value

\[\omega = (w_1, w_2, \ldots, w_M) \]
How Do We Use Ratchet?

What Do We Have to Do:

1. find a data map $D \mapsto Z$ and
2. a criterion PLD R on Z that is calibrated to e
A Map ϕ for M–Class Linear Machines

Data: $D = \{(x_1, y_1, B_1), (x_2, y_2, B_2), \ldots, (x_n, y_n, B_n)\}$

where

$$B_i = \begin{bmatrix} b_{i1} \\ b_{i2} \\ \vdots \\ b_{iM} \end{bmatrix}$$

and

$$b_{ij} = \text{loss incurred at } x_i \text{ when } y_i \text{ is true and } Y_j \text{ is predicted}$$

The empirical criterion is

$$R(\omega) = \sum_{i=1}^{n} \sum_{c=1}^{M} b_{ic} I(f_\omega(x_i) = c)$$

This is an M-class classification error with a weight for each classification assignment of each sample.
A Map ϕ for M–Class Linear Machines

Steps in Data Map:

1. define $\xi_i = (1, x_i)$
2. then define the map $\xi_i \mapsto (..., z_{ijk}, ...) \text{ as follows}$

$$z_{ijk} = (0...0 \xi_i 0...0 -\xi_i 0...0), \quad 1 \leq j, k \leq M, j \neq k$$

Example with $M = 3$

$$\begin{pmatrix} \xi_i & -\xi_i & 0 \\ \xi_i & 0 & -\xi_i \end{pmatrix} \quad z_{i12}$$
$$\begin{pmatrix} 0 & \xi_i & -\xi_i \\ -\xi_i & \xi_i & 0 \end{pmatrix} \quad z_{i21}$$
$$\begin{pmatrix} 0 & \xi_i & -\xi_i \\ -\xi_i & 0 & \xi_i \end{pmatrix} \quad z_{i23}$$
$$\begin{pmatrix} 0 & -\xi_i & \xi_i \\ -\xi_i & 0 & \xi_i \end{pmatrix} \quad z_{i31}$$
$$\begin{pmatrix} 0 & -\xi_i & \xi_i \end{pmatrix} \quad z_{i32}$$

With $\omega = (w_1, w_2, ..., w_M)$ we have

$$(w_j \cdot \xi_i > w_k \cdot \xi_i) \iff (\omega \cdot z_{ijk} > 0)$$

Also note that $z_{ijk} = -z_{ikj}$ so

$$(\omega \cdot z_{ijk} > 0) \iff (\omega \cdot z_{ikj} < 0)$$

so only one group can be positive.
Risk Function Values in terms of the Mapped Samples

Winner–take–all Property:

Example with $M = 4$,

\[\xi_i \rightarrow z_{i12}, z_{i13}, z_{i14} \quad \text{group 1} \]
\[z_{i21}, z_{i23}, z_{i24} \quad \text{group 2} \]
\[z_{i31}, z_{i32}, z_{i34} \quad \text{group 3} \]
\[z_{i41}, z_{i42}, z_{i43} \quad \text{group 4} \]

- For every ω without ties, exactly 1 group is ω–positive.
- For every ω with ties for the winner, 0 groups are ω–positive.
- For every ω there exists an $\hat{\omega}$ with no ties such that
 - $\hat{\omega}$ gives the same winner as the *max index* tie breaking rule.
 - $Z^+(\hat{\omega}) \supseteq Z^+(\omega)$.

The risk function values:

\[
R(\omega) = \sum_{i=1}^{n} \sum_{j=1}^{M} b_{ij} I(f_\omega(x_i) = j)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1}^{M} b_{ij} I(\hat{\omega} \cdot z_{ijk} > 0, \forall k \neq j)
\]

At this point it is almost obvious that R is PLD. (proof requires a little more work)
Comments/Observations

- Each sample ξ_i of dimension $d + 1$ maps to $M(M - 1)$ samples of dimension $M(d + 1)$.

- This is an extension of Kesler’s map (from 1960s) … which produced $M - 1$ samples of dimension $M(d + 1)$.

- Define
 \[\Delta_{ijk} = b_{ik} - b_{ij}. \]
 We can prove that R does not depend on the samples z_{ijk} for which $\Delta_{ijk} \leq 0$, so we can discard these samples. This reduces the number of mapped samples by at least 50%.

- Furthermore, we can replace samples z_{ijk} by $\Delta_{ijk}z_{ijk}$ (when $\Delta_{ijk} > 0$). With this modification Ratchet often requires fewer iterations to find a solution of equivalent value.
1. **Brute Force:** apply a nonlinear map, $z' \leftarrow \text{map}(z)$, and run Ratchet on z'.

2. **Kernel Method:** replace dot products with kernel computation

$$\omega \cdot z_i \iff \sum_j \alpha_j k(z_i, z_j)$$
The Kernelized Ratchet Algorithm

INPUT: A "data set" \(Z = \{z_1, z_2, ..., z_n\} \).

\[\alpha^* \leftarrow 0, \quad R^* \leftarrow R(\alpha^*) \]
\[\alpha \leftarrow 0 \]

\{Perform the RP algorithm and track the best solution.\}

\textbf{loop}

\[i \leftarrow \text{index chosen randomly from } \{1, 2, ..., n\} \]

\textbf{if} \(\sum_j \alpha_j k(z_i, z_j) \leq 0 \) \textbf{then}

\[\alpha_i \leftarrow \alpha_i + 1.0 \]

\textbf{if} \(R(\alpha) < R^* \) \textbf{then}

\[R^* \leftarrow R(\alpha) \]

\[\alpha^* \leftarrow \alpha \]

\textbf{end if}

\textbf{end if}

\textbf{end if}

\textbf{end loop}

- This is simplest version ... (may want to pull the offset weights out of the kernel)
- Some simple speed-up options (pre-compute kernel matrix, update \(R \) instead of computing from scratch each time, etc.)
Ratchet: Strengths and Weaknesses

Advantages:
- Simplicity! (implementation is trivial, very few tuning parameters (stopping))
- Flexibility - can be applied to a large number of different learning problems
- Direct solution method that adjusts all weights simultaneously accounting for simultaneous interactions between all M classes. (in contrast to pairwise training)
- Computationally Robust
 - very simple numerical operations (dot products), no divisions or matrix inverses, weights are bounded
 - robust to repeated samples (which can cause singularities in other learning algorithm)
 - trivial to kernelize
- Asymptotic Properties are very good: estimation and computation error go to zero asymptotically and with the proper choice of kernel so does the approximation error (consistency).
- Has been shown to be very effective in numerous real world problems.

Disadvantages: Ratchet is a randomized algorithm so ...
- convergence can be very slow
- different solution each time
Experiment #1

Converting Printed Documents to ASCII:

Basic OCR System

- printed document (PD) → scanner → digitized document (DD) → convert to ASCII → ASCII document (AD)

Enhanced OCR System

- PD → scanner → DD → restore using 1 of M → RDD → convert to ASCII → AD
 - c → feature map (FM) → classifier → human makes comparison and determines errors → y
I feel that it is both necessary to be undertaken without delay. Conclusions and recommendations by the Commission will give whatever those parts of the program are qualified.
Experiment #1

- **Performance Criterion:**
 - weighted multiclass with a *different cost for each class assignment for each sample*
 - non-zero cost even when the "best" class is chosen

- **Results:**
 1. A simple synthetic experiment
 2. Real Corpus data
Experiment #1

- **synthetic data:**
 - for each x_i there is an M-vector $(y_{i1}, y_{i2}, \ldots, y_{iM})$ of synthetic error rates,
 - each component y_{ij} is determined by a simple parametric model $p(y_j|x)$
- $M = 3$, $d = 2$ and $d = 5$
- training set sizes vary from $n = 25$ to 400.
- test set size is 10,000
- optimal solution illustrated on empirical distribution below
Classifier Design Methods

MV01: (AVA) An “all pairs” classifier trained with the Pocket algorithm.

kNN: The k–nearest neighbor method with Euclidean metric.

LM: An M–class linear machine trained with GMR to minimize the empirical OCR error.

LM01: An M–class linear machine trained with GMR to minimize “classification error”.

LM01PAIR: (OVA) An M–class linear machine trained with Pocket to minimize “pairwise classification error”.

QM: An M–class quadratic machine trained with GMR to minimize the empirical OCR error.

QM01: An M–class quadratic machine trained with GMR to minimize the same classification error as LM01 above.

QM01PAIR: (OVA) An M–class quadratic machine trained with Pocket to minimize the same classification error as LM01PAIR above.
1. optimal
2. training set
3. kNN (k=10)
4. LM
5. QM
6. LM01
7. QM01
Two-Dimensional Experiments

Two-dimensional experiments: kNN and Linear Machines

Two-dimensional experiments: kNN and Quadratic Machines
Five-Dimensional Experiments

Five-dimensional experiments: kNN and Linear Machines

Five-dimensional experiments: kNN and Quadratic Machines
Real Corpus Data

- **Data:**
 - 1445 documents from a real world corpus
 - $d = 7$ quality measures (features input to the classifier)
 - $M = 10$ classes (restoration techniques, 9 + original)
Experiment #1

Summary of Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Bound</td>
<td>0.0810</td>
</tr>
<tr>
<td>No Restoration</td>
<td>0.1105</td>
</tr>
<tr>
<td>MV01</td>
<td>0.1018</td>
</tr>
<tr>
<td>kNN</td>
<td>0.0983</td>
</tr>
<tr>
<td>LM</td>
<td>0.0977</td>
</tr>
<tr>
<td>QM</td>
<td>0.0988</td>
</tr>
<tr>
<td>LM01</td>
<td>0.1019</td>
</tr>
<tr>
<td>QM01</td>
<td>0.1002</td>
</tr>
<tr>
<td>LM01PAIR</td>
<td>0.1036</td>
</tr>
<tr>
<td>QM01PAIR</td>
<td>0.1028</td>
</tr>
</tbody>
</table>

- MV01 (previous AVA method) is an improvement over “no restoration”
- kNN, LM and QM all provide improvement over previous method (MV01)
- LM has best error estimate
- optimizing OCR error rate (LM and QM) works better than optimizing classification error (LM01 and QM01)
- optimizing overall error (LM01 and QM01) works better than pairwise optimization
Multiclass Regression

Model: A model implements a function $f : X \to Y$ where Y is a finite set with M discrete ordered values.

Goal: Design an M-class classifier where the classes are ordered.
Multiclass Regression

- **Loss Function for MC Regression:** (define $0^0 = 0$)

 $$b(x, y, \hat{y}) = |y - \hat{y}|^p = |y - \mathcal{Y}_{f(x)}|^p$$

 where

 - $p = 2$ ⇒ mean squared error
 - $p = 1$ ⇒ mean absolute error
 - $p = 0$ ⇒ mean counting error (traditional multiclass error)

- **Performance Criterion:**

 $$e(f) = E_P \left[|y - \mathcal{Y}_{f(x)}|^p \right] \approx \frac{1}{n} \sum_{i=1}^{n} |y_i - \mathcal{Y}_{f(x_i)}|^p$$

- **Extension:** It is easy to extend to the x-dependent loss

 $$b(x, y, \hat{y}) = a(x) |y - \hat{y}|^p$$
Experiment #2

High Speed Video \(\rightarrow \) Predictor \(\rightarrow \) Hardness

\((4000 \text{ f/s}) \)

Ground Truth Data

<table>
<thead>
<tr>
<th>1010 C</th>
<th>1177 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>482 C</td>
<td>42.3–43.2</td>
</tr>
<tr>
<td>565 C</td>
<td>35.9–36.2</td>
</tr>
<tr>
<td>621 C</td>
<td>32.6–33.2</td>
</tr>
</tbody>
</table>
Experiment #2

- We cannot measure the hardness value at every point, but we can measure a hardness value interval.
- Our goal is to predict the hardness value interval:

```
| H33 | H35 | H36 | H39 | H43 | H45 |
```

Performance Criterion:
- The average absolute difference between the mid value of the predicted interval and the mid value of the true interval.
- weighted multiclass with a different cost for each class assignment for each sample
- classes are ordered

Cost Matrix

<table>
<thead>
<tr>
<th></th>
<th>H45</th>
<th>H43</th>
<th>H39</th>
<th>H36</th>
<th>H35</th>
<th>H33</th>
</tr>
</thead>
<tbody>
<tr>
<td>H45</td>
<td>0</td>
<td>2.6</td>
<td>6.7</td>
<td>9.4</td>
<td>10.7</td>
<td>12.6</td>
</tr>
<tr>
<td>H43</td>
<td>2.6</td>
<td>0</td>
<td>4.1</td>
<td>6.8</td>
<td>8.1</td>
<td>10.0</td>
</tr>
<tr>
<td>H39</td>
<td>6.7</td>
<td>4.1</td>
<td>0</td>
<td>2.7</td>
<td>4.0</td>
<td>5.9</td>
</tr>
<tr>
<td>H36</td>
<td>9.4</td>
<td>6.8</td>
<td>2.7</td>
<td>0</td>
<td>1.3</td>
<td>3.2</td>
</tr>
<tr>
<td>H35</td>
<td>10.7</td>
<td>8.1</td>
<td>4.0</td>
<td>1.3</td>
<td>0</td>
<td>1.9</td>
</tr>
<tr>
<td>H33</td>
<td>12.6</td>
<td>10.0</td>
<td>5.9</td>
<td>3.2</td>
<td>1.9</td>
<td>0</td>
</tr>
</tbody>
</table>
Experiment #2

$d = 8$ features, several thousand data samples

Results:

<table>
<thead>
<tr>
<th>Method</th>
<th>Weighted Classification Error (0,10.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>3.9</td>
</tr>
<tr>
<td>Ratchet</td>
<td>2.16</td>
</tr>
<tr>
<td>kNN</td>
<td>1.95</td>
</tr>
</tbody>
</table>
Experiment #3

- **Goal:** Predict the number of semesters it takes a student to graduate.
- **Features:** (from Tushar)

 | SEMGPA01 | SEMGPA02 | SEMGPA03 |
 | SEMGPA04 | SEMGPA05 | SEMGPA06 |
 | CUMHRS02 | CUMHRS04 | CUMHRS06 |

- **Data:**
 - UNM undergraduate students who started in 2006-2010
 - kept only students with > 6 semesters and no missing feature values (9962)
 - $M = 13$ "classes" (7,8,...,19)

- **Train/Test:** 80%/20% (one hold-out set)

- **Methods:**
 - Standard Regression: Linear and Nonlinear (spline model) (Reg $p = 2$)
 - Multiclass Regression: Linear (and Quadratic) Machine with Ratchet (MReg $p = 1$ and Reg $p = 2$)
 - Multiclass Regression: kNN method (MReg $p = 1$)
 - Multiclass Classification: CART (MCC $p = 0$)
 - Multiclass Classification: Linear (and Quadratic) Machine with Ratchet (MCC $p = 0$)
Experiment #3

The graph shows the distribution of the number of students across different numbers of semesters. The x-axis represents the number of semesters, ranging from 6 to 20, and the y-axis represents the number of students, ranging from 0 to 3000. The bars indicate the number of students for each semester range.
Experiment #3

Naive Method: shown in ()

<table>
<thead>
<tr>
<th>Method</th>
<th>Classification Error Rate</th>
<th>Mean Absolute Error</th>
<th>Mean Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg-Lin</td>
<td>.73 (.74)</td>
<td>1.27 (1.44)</td>
<td>3.1 (3.4)</td>
</tr>
<tr>
<td>Reg-NonLin</td>
<td>.73 (.74)</td>
<td>1.24 (1.44)</td>
<td>3.0 (3.4)</td>
</tr>
<tr>
<td>Reg-Ratchet-Lin</td>
<td>.73 (.74)</td>
<td></td>
<td>3.26 (3.57*)</td>
</tr>
<tr>
<td>MCRReg-Ratchet-Lin</td>
<td>.72 (.74)</td>
<td>1.31 (1.4)</td>
<td>3.26 (3.57*)</td>
</tr>
<tr>
<td>MCRReg-Ratchet-Quad</td>
<td>.7 (.74)</td>
<td>1.26 (1.4)</td>
<td></td>
</tr>
<tr>
<td>MCRReg-kNN</td>
<td>.68 (.74)</td>
<td>1.2 (1.4)</td>
<td></td>
</tr>
<tr>
<td>MCC-CART</td>
<td>.65 (.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCC-Ratchet-Lin</td>
<td>.67 (.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCC-Ratchet-Quad</td>
<td>.68 (.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCC-kNN</td>
<td>.68 (.74)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Naive method is different for linear vs multiclass regression (\(\bar{y}\) vs most common category)
Linear Regression - MCC Matrix

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>112</td>
<td>66</td>
<td>403</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>295</td>
<td>1288</td>
<td>964</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>63</td>
<td>773</td>
<td>1329</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>56</td>
<td>602</td>
<td>1561</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>9</td>
<td>99</td>
<td>712</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>9</td>
<td>118</td>
<td>797</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>22</td>
<td>241</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>2</td>
<td>33</td>
<td>216</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>7</td>
<td>26</td>
<td>6</td>
<td>193</td>
<td>354</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>621</td>
<td>1176</td>
<td>737</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>259</td>
<td>933</td>
<td>960</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>246</td>
<td>772</td>
<td>1192</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>35</td>
<td>187</td>
<td>597</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>44</td>
<td>198</td>
<td>682</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>6</td>
<td>40</td>
<td>215</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>5</td>
<td>47</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>11</td>
<td>74</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>4</td>
<td>13</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>246</td>
<td>99</td>
<td>77</td>
<td>105</td>
<td>30</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>124</td>
<td>1510</td>
<td>522</td>
<td>337</td>
<td>24</td>
<td>28</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>93</td>
<td>791</td>
<td>683</td>
<td>507</td>
<td>37</td>
<td>52</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
<td>698</td>
<td>634</td>
<td>677</td>
<td>62</td>
<td>83</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>38</td>
<td>153</td>
<td>205</td>
<td>332</td>
<td>28</td>
<td>63</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>42</td>
<td>149</td>
<td>249</td>
<td>380</td>
<td>49</td>
<td>53</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>36</td>
<td>55</td>
<td>113</td>
<td>19</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>34</td>
<td>68</td>
<td>109</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>45</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>23</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
MC-CART - MCC Matrix

<table>
<thead>
<tr>
<th></th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>315</td>
<td>58</td>
<td>22</td>
<td>186</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>148</td>
<td>1548</td>
<td>378</td>
<td>473</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>733</td>
<td>532</td>
<td>775</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>132</td>
<td>601</td>
<td>383</td>
<td>1103</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>67</td>
<td>101</td>
<td>103</td>
<td>549</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>145</td>
<td>105</td>
<td>620</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>24</td>
<td>26</td>
<td>184</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>40</td>
<td>23</td>
<td>171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>11</td>
<td>4</td>
<td>64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>263</td>
<td>50</td>
<td>0</td>
<td>252</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>108</td>
<td>1607</td>
<td>0</td>
<td>815</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>93</td>
<td>934</td>
<td>0</td>
<td>1107</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>96</td>
<td>770</td>
<td>0</td>
<td>1320</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>9</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>46</td>
<td>146</td>
<td>0</td>
<td>609</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>192</td>
<td>0</td>
<td>664</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>27</td>
<td>31</td>
<td>0</td>
<td>198</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>49</td>
<td>0</td>
<td>176</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>13</td>
<td>0</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
THANK YOU!